CONTENTS

Preface vii
Acknowledgments ix

1 Why and When Are Smart People Stupid? 1
 Ray Hyman

2 Beliefs That Make Smart People Dumb 24
 Carol S. Dweck

3 Smart People Doing Dumb Things:
 The Case of Managerial Incompetence 42
 Richard K. Wagner

4 The Engine of Folly 64
 David N. Perkins

5 When Smart People Behave Stupidly:
 Reconciling Inconsistencies in Social-Emotional Intelligence 86
 Ozlem Ayduk and Walter Mischel

6 Sex, Lies, and Audiotapes:
 The Clinton-Lewinsky Scandal 106
 Diane F. Halpern

7 Rationality, Intelligence, and Levels of Analysis in Cognitive Science:
 Is Dysrationalia Possible? 124
 Keith E. Stanovich

8 Smart Is as Stupid Does:
 Exploring Bases of Erroneous Reasoning of Smart People
 Regarding Learning and Other Disabilities 159
 Elena L. Grigorenko and Donna Lockery
9 Personality Dispositions 187
 Elizabeth J. Austin and Ian J. Deary
10 When “Stupid” Is Smarter Than We Are:
 Mindlessness and the Attribution of Stupidity 212
 Mihnea Moldoveanu and Ellen Langer
11 Smart People Are Not Stupid, But They Sure Can Be Foolish:
 The Imbalance Theory of Foolishness 232
 Robert J. Sternberg
List of Contributors 243
Index 245
Those who have wondered if smart people can be stupid do not have to look very far, nor do they have to look through the lenses of any particular ideology.

- A president of the United States, graduate of Yale Law School, and Rhodes Scholar showed behavior so “stupid” that few people can understand why he did what he did. Beyond any hormonally motivated behavior on his part, the whole world wondered how a trained lawyer could have allowed himself to become entangled in such a legal nightmare.
- A seasoned prosecutor and judge with a reputation for some brilliance damaged his good name among much of the U.S. population with his apparent vendetta against a president. His campaign left many people convinced that the prosecutor was more interested in “winning” than in pursuing any reasonable legal case.
- A U.S. congressman known for being ideological but balanced and wise left the fray with his reputation in tatters when he and his fellow House “managers” pursued a case they could not win.
- A former prosecutor and state’s attorney general in Delaware was sentenced to death for murdering a girlfriend who jilted him.
- A world-renowned geologist, while being investigated for and charged with storing child pornography, involved himself with a boy whom he was later accused of molesting.

Whether one believes in a single intelligence (g or IQ) or multiple intelligences or anything in between, the behavior of the individuals mentioned above (and, indeed, at times, our own behavior) seems inexplicable in terms of what we know about intelligence. Why do people think and behave in such stupid ways that they end up destroying their livelihood or even their lives?

This book is devoted to addressing these questions, which the vast majority of theories in psychology, including theories of intelligence, seem to neglect. The world supports a multi-million-dollar industry in intelligence and ability research and testing to determine who has the intelligence to succeed, but it devotes virtually nothing to determine who will best use this
intelligence and who will squander it by engaging in amazing, breathtaking acts of stupidity.

“Stupidity” here does not refer to mental retardation, learning disability, or any of the usual labels assigned to people who perform poorly on one or another conventional test. Many of these people function well in their everyday lives. Rather, the focus here is on those who demonstrate the kind of stupidity that can take one’s breath away.

Clearly, this is not a book about stupidity in the conventional, IQ-based sense. But stupidity in the conventional sense is almost never the kind that destroys people’s lives or the lives of those around them. Rather, the book deals with the kind of stupidity that has left countries in the nearly perpetual throes of wars that no one ever seems to win and where it often is not clear what is at stake or how the battle lines have been drawn.

In order to achieve coherence, the contributors to this book were asked to address the following issues:

- The nature of the attribute of stupidity
- The proposed theory of the attribute
- How stupidity relates to intelligence
- How stupidity contributes to stupid behavior
- Whether stupidity is measurable
- Whether stupidity is modifiable (in order to make a person less stupid)

This book will be of special interest to readers for several reasons. First, the topic is particularly timely, as Americans watch political leaders at all points in the political spectrum behaving in ways that, to outsiders at least, appear breathtakingly stupid. Second, although many books address intelligence in its various forms, relatively few tackle the topic of stupidity. The majority of such books are simplistic “how-to” books that eschew both psychological theory and empirical research. Although the book does contain information on how people can avoid behaving stupidly in their own lives, that information is supplied from the standpoint that anyone can benefit from gaining insights into why people act as stupidly as they do. Third, and finally, this book includes a variety of perspectives on stupidity, providing readers with a range of sources for that behavior.
ACKNOWLEDGMENTS

I am grateful to Sai Durvasula and Cynthia Blankenship for assistance in the preparation of the manuscript, to Susan Arellano for contracting the book, and to my colleagues at the Center for the Psychology of Abilities, Competencies, and Expertise (PACE Center) at Yale for their collaborations, which have helped immeasurably in the development of my thinking about stupidity.

Preparation of this book was supported in part by Grant REC-9979843 from the National Science Foundation and a government grant under the Javits Act Program (Grant No. R206R000001) as administered by the Office of Educational Research and Improvement, U.S. Department of Education. Grantees undertaking such projects are encouraged to express freely their professional judgment. This book, therefore, does not necessarily represent the positions or policies of the U.S. government and no official endorsement should be inferred.
1 Why and When Are Smart People Stupid?

The Issue

The title of this book, *Why Smart People Can Be So Stupid*, assumes that smart people at least sometimes do stupid things. In addition, the title implies that such stupid behavior needs explaining. The first challenge to anyone who tries to provide an explanation is that the title is phrased in terms from the common vernacular. The key words *smart* and *stupid* belong to folk psychology. As such, their meanings are vague, ambiguous, and shift with person and context.

The term *smart* can be equated with the psychological concept of *intelligence*. This, in fact, is what the contributors to this volume seem to have done. Indeed, this may be the one matter upon which all these authors are in agreement. Unfortunately, the term *stupid* seems to have no obvious technical counterpart in psychological theory. One consequence is that the authors differ greatly on how they treat this concept.

The title makes it clear that smartness is a property of people. It is an enduring property of a person. A person who is “smart” today is expected to be smart tomorrow and into the foreseeable future. Of course, at least some of the authors make it clear that they do not consider intelligence to be fixed. People can, with effort and proper instruction, improve their intelligence. However, quick changes and major fluctuations in intelligence are rare.

Stupidity, on the other hand, can be a property of an act, behavior, state, or person. We might believe that the act of smoking is stupid regardless of the intent, motivations, and construals of the people doing the smoking. Although I believe that many people apply the label of “stupid” to acts in
this way, I suspect that none of the contributors to this book consider this usage. The hint of a paradox in this book’s title resides in the possibility that “stupid” is being used as a property of a person. Because, with one exception, all the authors treat stupid as the opposite of smart; handling both these terms as properties of the person implies that the same person is both smart and stupid at the same time. So, at first blush, the title seems to pose a paradox. This, in turn, suggests a puzzle to be solved.

One way to resolve this paradox is implicit in the chapters by Wagner, Sternberg, and possibly a few others. This resolution is to treat intelligence and stupidity as domain-dependent. Thus, the same person could be smart in her professional life and stupid in her personal affairs. A more interesting way to dissolve the apparent paradox is to treat stupidity as a state or a property of behavior. This would allow for a person who is generally smart in her professional life to occasionally behave stupidly in that same professional life. Indeed, it is this latter scenario that most of the contributors to this book seem to have in mind.

All the authors focus on the behavior of smart people. This leaves open the question of whether dumb (unintelligent) people can be stupid. This is both tricky and nontrivial. I think it is fair to say that most of the contributors treat stupidity as a failure of the actor to optimally use her abilities or cognitive capacity. Although this makes sense, it also seems to be at variance with the common assumption that stupidity is a manifestation of low intelligence. If stupidity is treated as a discrepancy between actual and potential behavior, then it cannot be the case that a person who behaves in a maladaptive fashion and who is using the full potential of her low intellectual abilities is acting stupidly.

Points of Agreement and Disagreement

Most of the authors accept the challenge of answering the question of why smart people can be stupid. Both Perkins and Ayduk and Mischel deal with the matter as a failure of self-regulation. Stupid behavior, in their treatments, comes about when activity is triggered at an inappropriate time in an inappropriate situation or when the actor fails to suppress an immediate gratification in the pursuit of a more important, but longer-range, objective. For Dweck, stupidity follows from failure to fully use one’s capabilities and failure to exploit opportunities for learning. These failures, in turn, seem to follow from a belief in fixed intelligence and a defensive avoidance of tackling tasks that could lead to poor performance. Both Stanovich and Austin and Deary look for causes of stupidity in personality and other dispositional
aspects of the individual, independent of intelligence. Both Wagner and Grigorenko and Lockery also find stupidity at the level of social systems. Halpern attributes the stupidity of Bill Clinton’s handling of the revelation of his affair with Monica Lewinsky to his failure to recognize changes in the environment and his reliance on old habits (mindlessness).

Three strikingly different ways of resolving the apparent paradox are evident in the chapters by Stanovich, Moldoveanu and Langer, and Sternberg, respectively. While most of the authors treat “stupid” as the opposite of “smart” (intelligent), Stanovich argues for the advantages of treating stupid as the opposite of rational. Following the lead of some other cognitive scientists, Stanovich considers mental functioning at three levels. The first, or biological level, deals with the “hardware” or implementation of activity. The second level, algorithmic, corresponds to the cognitive capabilities of the system. Stanovich locates smartness or intelligence at this level. The third level, the intentional one, is where thinking dispositions, goal setting, coping styles, and the like are found. Here is where it makes sense to speak of rational or stupid behaviors. Stupidity, in this analysis, follows from a failure to use the cognitive abilities at level two in the pursuit of goals (pragmatic or epistemic).

Moldoveanu and Langer focus on the inappropriate use of the label “stupid.” They argue that many apparent cases of stupidity result from the mindless labeling of actors by observers. They also discuss apparent stupidity stemming from mindless interactive pursuits of scripts (such as teacher-pupil scripts), and from the mindless assimilation by the actor of social biases. They argue that most, if not all, the research in which subjects fail to act according to normative standards does not justify the implication that the subjects’ behavior is “irrational” or that humans are “cognitive cripples.” Such implications merely reflect the failure of mindless experimenters to recognize that their subjects might be processing the given information differently from the way they do. Moldoveanu and Langer believe that when proper consideration of the way subjects have construed the problem is taken into account, their rationality will be vindicated. They propose that if we substitute the mindful/mindless continuum for the intelligent/nonintelligent one, the temptation to label people and behaviors as stupid will vanish.

Sternberg dissolves the paradox by simply denying that smart people can be stupid. Instead, in contrast to Stanovich, Sternberg seems to accept that stupid is the opposite of smart. However, he changes the issue from why smart people can be so stupid to why smart people can be so foolish. In this context, foolish is the opposite of wise. This enables him to bring to bear his balance theory of wisdom and his imbalance theory of foolishness. In this light,
Clinton’s behavior in the Lewinsky aftermath might not have been stupid, but it certainly was foolish. Sternberg agrees with Halpern, that Clinton’s inappropriate behavior (“stupid” in Halpern’s story and “foolish” in Sternberg’s account) resulted from defects in reading situational cues.

Moldoveanu and Langer stand out as the only authors to reject the ecological validity of the heuristics and biases research. They imply that this research has no bearing upon real-world behavior. Stanovich, on the other hand, lists several examples of how these same laboratory-discovered biases operate in the real world—physicians’ diagnoses, risk assessment, legal issues, and so on. Wagner, Halpern, and Grigorenko and Lockery explicitly acknowledge the reality of these biases in real life, while the other contributors seem to implicitly accept this extension.

The apparent disagreements among the authors can be traced, in part, to the ambiguities in the terms smart and stupid. The authors differ in just how they define and map these terms onto psychological constructs. The major source of apparent disagreement, however, results from the different exemplars, contexts, and examples that the authors use as their referents for stupidity. Most of them dismiss examples of “stupidity” resulting from lack of information, momentary lapses, fatigue, and simple “performance” executions as uninteresting. Some impulsive actions, such as a truck driver who tries to beat a train at a railroad crossing, and the failure of children to postpone gratification, are the focus of at least two chapters. The Clinton-Lewinsky affair receives prominent attention in two other chapters. Managerial incompetence, the Iran-Contra affair, smoking, Chechnya, teacher-student perceptions, stereotyping of learning disabilities, and social follies such as Vietnam and the Rodney King affair are other examples used by different authors in their explorations of stupidity.

Adaptive and maladaptive behaviors occur in an enormous variety of contexts and situations. Each of these contexts can raise a variety of different issues. In all of them, some behaviors seem to be so irresponsible, heedless, thoughtless, negligent, or outrageous that they invite the label “stupid.” Perhaps, as Moldoveanu and Langer imply, it would be better if we avoided using this pejorative label. However, if we abandon it, I suspect we will find that we will need some equivalent way to identify those acts that go beyond mere mindlessness. Not all goofs are created equal.

In his classic The Mentality of Apes, Wolfgang Köhler (1959) identified three kinds of errors in his extensive observations of chimpanzees solving problems:

1. “Good errors.” “In these, the animal does not make a stupid, but rather an almost favourable impression, if only the observer can get
right away from preoccupation with human achievements, and concentrate only on the nature of the behaviour observed.”

2. “Errors caused by complete lack of comprehension of the conditions of the task.” “This can be seen when the animals, in putting a box higher up, will take it from a statically good position and put it into a bad one. The impression one gets in such cases is that of a certain innocent limitation.”

3. “Crude stupidities arising from habit.” “In situations which the animal ought to be able to survey. . . . Such behaviour is extremely annoying—it almost makes one angry. . . . This kind of behaviour never arises unless a similar procedure often took place beforehand as a real and genuine solution. The stupidities are not accidental ‘natural’ fractions, from which primarily apparent solutions can arise . . . they are the after-effects of former genuine solutions, which were often repeated, and so developed a tendency to appear secondarily in later experiments, without much consideration for the special situation. The preceding conditions for such mistakes seem to be drowsiness, exhaustion, colds, or even excitement” (pp. 173–174).

Köhler was a staunch defender of animal intelligence. His book is a spirited rebuttal to Thorndike’s attempt to account for all animal “reasoning” in terms of blind trial and error. Yet, we see that Köhler feels compelled to label some chimpanzee behaviors as “stupid.” Indeed, he needs this label precisely because he recognizes that other chimpanzee behavior can be insightful and intelligent in the context of the chimpanzee’s world. Likewise, we do not defame human cognition by recognizing some cognitive actions as stupid. It is only because we acknowledge that human cognition is usually rational and adaptive that we can identify some departures from this rational and adaptive behavior as stupid.

I previously mentioned how the apparent differences in the approaches to stupidity by the various contributor to this book are due to their use of different referents. So it might be helpful to briefly discuss a few more examples of goofs or maladaptive behavior to strengthen our grasp of the many issues arising from this consideration of why smart people can be so stupid.

Some Additional Candidates for Stupid Behavior

At times a patently smart person can blunder or go badly astray. Every field of human activity provides a multitude of examples of such behavior. Each example, in turn, suggests a number of possible reasons for departures
from rational or sensible behavior. Here, I look at some examples beyond those discussed by the contributors to this volume in order to see how their discussions might help us understand these additional cases.

LEVERRIER AND THE PLANET VULCAN

On September 23, 1846, astronomers Galle and d’Arrest, both from Berlin, announced the discovery of a new planet, which was later named Neptune. The remarkable thing about this discovery was that the astronomers made their discovery by aiming their telescope at a location in the sky based on the mathematical calculations of the French astronomer Urbain Jean Joseph Leverrier. Leverrier had become interested in the problem of the orbit of the recently discovered planet Uranus. The perceived sightings of Uranus seemed to deviate somewhat from the orbit calculated from Newtonian mechanics. Some contemporary astronomers proposed various possibilities to account for this discrepancy such as unseen satellites or other planets. Some even suggested that Newton’s inverse square law might not hold for the farther reaches of space. As a strict Newtonian, Leverrier began his attack on the problem with the firm belief that Newton’s laws were inviolate (Grosser 1979; Hanson 1962).

The problem became one of squaring the reported locations of Uranus with the orbit predicted by Newtonian theory. Leverrier reexamined both the old and later sightings of Uranus. He recalculated the orbits from the data and discovered that previous astronomers had made several errors. Nevertheless, after correcting for these errors, he still found a small but real discrepancy between the observed and predicted locations for the planet. After considering and eliminating several possibilities, he surmised that the observed perturbation of the orbit was due to a previously undetected planet farther away from the sun than Uranus. His task then became to determine the size and orbit of this possible planet. This problem was inherently difficult because of several unknowns. After time-consuming and enormously difficult and sophisticated calculations, Leverrier announced the size, distance from the sun, orbit, and predicted locations for this hypothetical planet.

At first he could not persuade the major French and British observatories to look for his predicted planet. He finally convinced Galle to look for it where his calculations predicted it should be. A few days after receiving the coordinates from Leverrier, Galle and his colleague looked and found the new planet very close to where Leverrier had predicted it to be. Some luck was involved because Leverrier’s orbit deviated in parts from Neptune’s actual orbit. However, at the time of the sighting, Neptune’s actual orbit and Leverrier’s predicted orbit overlapped. With the discovery of Neptune,
Leverrier became an instant celebrity. He was lionized as the second Newton and was honored by the major scientific societies throughout Europe. What especially intrigued his scientific colleagues was that Leverrier had made this important discovery without himself making any observations. The famous French astronomer Claude Flammarion wrote that Leverrier “discovered a star with the tip of his pen, without other instrument than the strength of his calculations alone” (quoted in Baum and Sheehan 1997, p. 2).

Leverrier was thirty-five years old when he achieved one of the greatest triumphs for Newtonian mechanics. To discover Neptune, he relied on Newton’s theory and almost superhuman mathematical calculations. Prior to the discovery of Neptune, Leverrier had discovered a perturbation in the orbit of Mercury. The discrepancy was very small, but he could not explain it away as simply an error. Fresh from his triumph of reconciling the perturbation in Uranus’ orbit with Newtonian mechanics, Leverrier set about to do the same for the disturbance in Mercury’s orbit. He worked on this problem another thirteen years before he was ready to announce his prediction of a new planet closer to the sun than Mercury. This planet would help to account for the perturbations in Mercury’s orbit (Baum & Sheehan 1997; Fernie 1994; Fontenrose 1973; Hanson 1962).

Leverrier announced his new theory about a hidden planet inside Mercury’s orbit on September 12, 1859. On December 22 of that same year, Edmonde Lescarbault, a physician and amateur astronomer from the rural district of Orgères, wrote a letter to Leverrier claiming that he had observed the very same planet described by Leverrier in March of that year. Leverrier visited Lescarbault, unannounced, and questioned him carefully to judge his honesty and competence. Although Leverrier discovered that Lescarbault had used crude instrumentation and had carelessly kept his records, he decided that Lescarbault was honest and sufficiently competent to have spotted the previously hidden planet. Leverrier arranged to have Lescarbault receive the Legion of Honor. He also named the new planet Vulcan.

The announcement of the discovery of Vulcan created a sensation. This was considered a second great triumph for the genius Leverrier. Leverrier made new calculations regarding the size and orbit of Vulcan and advised the astronomical world when and where to look to best view this new planet. At the appointed time, astronomers—both professional and amateur—around the world looked for Vulcan and failed to find it. Leverrier made new calculations and sent out new advisories about where and when to look. Again, no credible sightings occurred. During the next several years, this drama kept repeating itself. Leverrier would make new calculations and send out new instructions. Astronomers would aim their telescopes at the new coordinates and find nothing. On occasion, one or two professional

Why and When Are Smart People Stupid? : 7
astronomers and some amateurs did report sighting what they believed was the planet Vulcan. In most cases, the reports were inconsistent with one another and with Leverrier’s calculations.

Leverrier issued his last alert in 1877, the same year he died. He strongly maintained his belief in the reality of Vulcan right up to his death. By that time, however, most of the astronomical world no longer believed that either Vulcan or any other planetary matter lay between Mercury and the sun. Nevertheless, the problem of the perturbation in Mercury’s orbit persisted. Finally, in 1915, Einstein published his general theory of relativity, which triumphantly accounted for the orbit of Mercury. Hanson (1962) succinctly encapsulates Leverrier’s rise to fame and descent to ignomy in the following words:

Who else can be said to have raised a scientific theory to its pinnacle of achievement—and then shortly later, to have discovered those discrepancies which dashed the theory to defeat? By pressing Newton’s mechanics to the limit of its capacities to explain and predict, Leverrier revealed Uranus’ aberrations as intelligible; he also predicted the existence of the then-unseen planet Neptune, which has just those properties required dynamically to explain Uranus’ misbehavior. In history few have approached Leverrier’s achievement as a human resolution of an intricate natural problem. When he detected a somewhat analogous misbehavior in Mercury, Leverrier naturally pressed the same pattern of explanation into service. He calculated, via the law of gravitation, the elements of some as-yet-unseen planet which would do for Mercury just what Neptune had done for Uranus. In this Leverrier failed. In a sense, his failure was one for Newtonian mechanics itself. (p. 359)

Halpern’s analysis of why President Clinton believed he could have an affair with Monica Lewinsky and remain unscathed can be applied to why Leverrier went so wrong in his advocacy for the reality of Vulcan. His resounding success in predicting the existence of Neptune set the stage for his prediction of Vulcan. He went through the same process of carefully delineating the precise anomaly in each case that required explanation. In both cases, he then went through the painstaking calculations to find a previously unseen planet that would have just the right size, orbit, and other properties to account for the anomalous behavior of each planet. This procedure was brilliantly validated in the case of Neptune.

Neptune’s discovery was uncontrovertial. It was made by a major observatory, and immediately other astronomers could confirm the sighting and also retroactively find Neptune in photographs made earlier of that part of
the sky. Confirmation for Vulcan was less clearcut. The first evidence came from an amateur with crude instruments and no prior record of contributions to astronomy. However, given that his procedure had been so successful with Neptune, Leverrier did not need such strong evidence to convince himself that his calculations had borne fruit again. During his remaining seventeen years, the overwhelming majority of attempts to observe Vulcan were negative. However, sporadic reports did keep reaching Leverrier—mostly from amateurs—of alleged sightings of Vulcan. Such partial reinforcement is all that Leverrier apparently needed to maintain his unwavering belief in the reality of Vulcan.

With hindsight, we can find several indications that should have alerted Leverrier to the fact that Vulcan did not exist. In terms of Sternberg’s theory, we could conclude that Leverrier was foolish in not recognizing the clues that made the Vulcan affair importantly different from the Neptune situation. However, one can also, in the spirit of Moldoveanu and Langer, create scenarios that, given Leverrier’s background and perception of the situation, would make Leverrier normatively correct in his belief in Vulcan. In Köhler’s sense, one could argue that Leverrier made a “good error.”

So, was Leverrier’s blunder an example of stupidity? Even many of his contemporaries believed he had gone too far in his defense of Vulcan. I find it easier to excuse his initial belief in Vulcan based on his calculations and his trust in Lescarbault. However, to stubbornly persist in his belief during the next seventeen years when every major observatory consistently failed to find evidence for the planet’s existence was at least foolish if not stupid. When should we describe a smart person’s behavior as stupid? If we can imagine a possible scenario under which the maladaptive behavior has normative or quasi-normative status, does this mean that the behavior has to be accepted as rational and reasonable? Given this strong principle of charity (Thagard & Nisbett 1983), must we then treat all blunders as equally rational and reasonable?

PILTDOWN MAN

In December 1918, Arthur Smith Woodward and Charles Dawson announced the discovery of a fossil skull and jaw belonging to an early Pleistocene primitive human whom they called Eoanthropus (The Dawn Man) (Weiner 1980). The pieces of the skull were clearly human, but the part of the accompanying jaw seemed clearly ape-like. These fossils had been found together in a gravel deposit at Piltdown in Sussex, England. Dawson, a country lawyer and amateur archaeologist, had earlier brought fragments of skull bones to Smith Woodward in the Department of Geology of the
British Natural History Museum. Woodward and Dawson did some more digging in the pit and uncovered more pieces of the brain case and the jaw. All the pieces were iron-stained, which was appropriate for fossils having been buried in the Piltdown gravels. The fossils were judged to be from the early Pleistocene period because of the presumed age of the gravel pit and the fossil remains of ancient animals that were also found in close proximity.

Piltdown Man, as the assumed creature who belonged to the skull and bone fragments came to be called, was considered sufficiently ancient to be a viable candidate for Darwin’s missing link between ape-like ancestors and modern man. Woodward’s reconstruction of the skull further emphasized this possibility. Although the skull was clearly human, Woodward’s reconstruction resulted in a brain that was clearly larger than that of any known ape but definitely smaller than that of any known human. The jaw, however, was clearly ape-like. The portion of the jaw that was preserved had two molar teeth that were worn flat. Such worn molars can occur only in humans because the canine teeth in apes prevent their jaws from moving from side to side, which would be necessary for the flat molars. In his reconstruction, Woodward assumed that such a jaw would have a large canine tooth. However, he re-created the canine such that it would jut out to allow the jaw to move from side to side and, as a result, would have unusual wear.

Woodward’s reconstruction was significant for two key reasons. When the discovery of Piltdown Man was first announced, some scientists openly expressed skepticism that the skull and jaw could belong to the same individual. They suggested that somehow the jaw and the skull fragments accidentally had drifted together. The defenders of Piltdown countered this argument by stating that it was highly unlikely to find in close proximity fragments of a human skull with no other human-like remains and fragments of a jawbone with no other ape remains. In addition, Woodward was able to point to the flattened molar teeth, which had never been seen in an ape. Shortly afterward, a tooth was found in the Piltdown gravel pit that just happened to have the peculiar wear pattern that Woodward had predicted in his reconstruction. This striking confirmation of Woodward’s unusual prediction silenced most skeptics. Later, in 1915, Dawson reported finding further fragments of a skull and a molar tooth that apparently belonged to the Piltdown jaw some few miles from the original Piltdown site. This additional conjunction of a human-like skull and ape-like jaw, for practical purposes, ended opposition to the idea that the jaw and skull came from the same individual.

Many reasons have been cited for the acceptance of the Piltdown artifacts as representing an ancient human ancestor. Some key British scientists had developed theories about ancient humans that each, for his own reasons,
saw confirmed in Piltdown Man. Piltdown Man clearly suggested that our ancestors had first developed a big brain and then shed their ape-like features. In addition, several scientists believed that Piltdown Man fit the missing link predicted by Charles Darwin. Most historians of the Piltdown saga attribute national pride as a major factor. Fossil evidence of prehistoric man had been found on the continent in Germany and France, but not in Britain, the home of Darwin. Indeed, the French scientists openly taunted the British on this score. So it was a source of national pride when fossil evidence of what could be the direct ancestor of modern man was found on British soil.

Although Piltdown Man was accepted as a legitimate member of the human family tree for forty years after its discovery, questions about its central role in our evolution began to accumulate. Piltdown Man implied that modern humans had evolved from ancestors who first acquired a big brain and then shed their ape-like features. However, as more and more fossil evidence of prehistoric humans began to accumulate, Piltdown’s status began to change. All the subsequent fossil finds since 1912 indicated that prehistoric humans first shed their ape-like features and then developed the larger brain—just the opposite of what Piltdown implied. The scientists and the textbooks handled this apparent paradox by assuming there were two major evolutionary branches from early ape-like ancestors: one branch, apparently the more successful one, involved those creatures that first shed their ape-like appearance and then acquired a big brain; the other branch, including Piltdown, developed a big brain first. The branch represented by Piltdown was an evolutionary dead end.

Around 1950, Kenneth Oakly applied the fluorine test to both the jaw and skull fragments of the Piltdown fossils. The test was not as sophisticated as later tests for determining the age of fossils. It could not, for example, detect any difference in age between the jaw and skull. However, it was sufficiently accurate to clearly determine that the fragments could not be from the early Pleistocene era. At best, they did not go back beyond the later Pleistocene era. This created a perplexing situation. If the fluorine tests were correct, then Piltdown Man—this creature that was part human and part ape—was wandering around at the same time that modern humans were. Furthermore, this peculiar creature had no known ancestors and no known descendants. Clearly, something was amiss!

In 1953, Oxford University anatomist J. S. Weiner, after some discussions at a scientific meeting, asked himself why he and other scientists had accepted the proposition that the Piltdown jaw and skull belonged to the same creature. His answer was the flat molars in the jaw. What if, he asked himself, someone had deliberately faked and planted the fossils?
But there appeared to be one main objection to this startling suggestion—the flat wear of the molar teeth at such an early stage of attrition (a type of wear not found in any of the modern apes). Dr. Weiner then took a chimpanzee jaw, filed down the molar teeth to form flat biting surfaces and stained them with potassium permanganate. When he showed the results of his experiment to me [the renowned Oxford anatomist, Walter Le Gros Clark] the next morning I looked at the teeth with amazement, for they reproduced so exactly the appearance of the unusual type of wear in the Piltdown molars. We therefore took the first opportunity to visit the Natural History Museum in London in order to examine the original Piltdown specimens with the possibility in mind that the teeth had been flattened by artificial abrasion. But first we had to consider what were the features by which the effects of natural wear of a tooth might be expected to differ from the effects of artificial abrasion. A study of a large series of human and ape teeth showed us that there were a certain number of features on which we would probably place reliance, and when we inspected the Piltdown molars in the light of this experience the evidences of artificial abrasion immediately sprang to the eye. Indeed, so obvious did they seem that it may well be asked—how was it that they had escaped notice before? The answer is really quite simple—they had never been looked for. The history of scientific discovery is replete with examples of the obvious being missed because it had not been looked for, and the present instance is just one more example; nobody previously had ever examined the Piltdown jaw with the idea of a possible forgery in mind. [Italics added] (Clark 1955, p. 145)

Walter Le Gros Clark lists the five criteria for identifying normal wear in lower molar teeth. Just glancing at the Piltdown molars quickly revealed that their pattern of wear violated all five criteria. In addition, new X-ray photographs showed that, contrary to the original report, the roots of the molars were more similar to ape than to human roots. Finally, “close inspection of the biting surfaces of the molars with a binocular microscope reveals that they are scored with criss-cross scratches; apparently the result of the application of an abrasive of some sort” (p. 146). These findings alone suffice to prove the fossils were fabricated. Weiner, Clark, and others quickly found other evidence for forgery. Indeed, the case for forgery was overwhelming.

In the context of this book, the question raised by Piltdown Man is: How can so many of the world’s best scientists have been taken in by this hoax for forty years? Clark provides one answer. He acknowledges that the evidence of a hoax was immediately evident upon inspection. His answer is that none of the original scientists saw the obvious signs of fraud because none of them were looking at the evidence with the hypothesis of fraud in mind. Other commentators have argued that the hoaxter must have been suf-
iciently scientifically knowledgeable and intelligent to have successfully fooled these great minds. Neither answer makes sense. The hoax was clearly rather crude. Almost all the signs of fraud were obvious. Just about all the original Piltdown scientists were—or should have been—aware of the many indicators of normal wear in lower molar teeth. For example, dentine wears faster than enamel, so that normally flattened molars show a concave surface. The Piltdown molars were flat, revealing the abnormal situation in which the dentine and enamel wore at the same rate. Also, the margins of normally worn molars are rounded and beveled. The Piltdown molars had sharp edges. All the other indicators of fraud were equally evident.

A better answer to how this crude hoax could have succeeded is found in the dynamics hypothesized to account for bystander apathy. Similar factors occurred in the Home-Stake oil swindle (McClintick 1977), in which prominent celebrities and executives of major financial institutions were lured into a tax deduction scheme that promised them 400 percent return on their investments. From the inadequately, and even illegally, prepared prospectuses to the outlandish promises of impossible returns, all the signs of fraud were obvious to any investor who took time to read the literature. Each of the prominent financial experts could have, and should have, easily detected these signs. Just as virtually the entire scientific community failed to detect the indications of fraud in the Piltdown hoax, these knowledgeable investors failed to follow the advice they routinely gave their clients. One reason the financial experts were successfully conned was that each one assumed the others had properly checked out the details. In like manner, each of the Piltdown experts simply assumed that the other experts had checked the teeth and the other evidence.

With each person mindlessly assuming that the others had mindfully looked into the important details, it turned out that no expert had actually done the obvious, mundane checks relevant to his or her domain. Many of the factors discussed by the contributors to this volume can help us understand how the Piltdown scientists fell for such a crude hoax. Confirmation bias and other biases and heuristics can easily apply. As we consider additional cases, however, we keep uncovering principles and issues not brought up in these chapters. To me, this says that we have a long way to go before we can piece together the full story of why smart people can go badly astray.

Were the Piltdown scientists stupid? Were they foolish? Yes, we can conjure up scenarios to account for or “excuse” their blunder. Such scenarios, however, seem more strained than the ones we can generate to account for Leverrier’s blunder. It seems to me even more inexcusable for the Piltdown scientists to have overlooked obvious evidence of forgery for such a long time. Still, I can imagine that those who preach the principle of charity would
not condone calling the Piltdown scientists foolish, let alone stupid. Therefore, I've chosen my final two examples to define more precisely what I think ought to be called foolish or stupid.

ALFRED RUSSEL WALLACE AND S. J. DAVEY

During the 1880s, S. J. Davey carried out a series of experiments that probably constitute the first systematic investigation of the fallacies of eyewitness testimony (Davey 1887; Hodgson 1887; Hodgson 1892). Davey instigated these experiments because of his personal experiences with spiritualism. In 1883 he was startled by a vision of a friend who had recently died. As a result he began reading extensively in the literature of spiritualism and psychical research. In 1884 he began attending seances conducted by the British medium Eglinton. One of Eglinton’s specialties was producing writing on slates, allegedly originating from spirits in the other world. Davey wrote glowing reports of Eglinton’s powers to various journals. Davey came to believe he also had mediumistic powers. “One afternoon in September, 1884, I took two slates and determined to experiment alone. I held them together with a small pencil grain between. I was in my library; the slates were taken out of a private box by myself; I glanced at them and placed them in the position above described. In the course of some few minutes I lifted up the slates and examined them, and found the word ‘Beware’ written in large characters across the under side of the upper slate” (Davey 1887, p. 406). Experiences such as this convinced Davey that he himself possessed mediumistic powers. Sometime afterward he discovered that these previously inexplicable experiences were hoaxes played upon him by his friends.

Davey continued having seances with Eglinton until 1885 when a friend claimed he had seen Eglinton cheating during one of the seances. This inspired Davey to see how much of Eglinton’s and other mediums’ feats he could duplicate by trickery. When he demonstrated some of his spiritualistic tricks he was surprised by how the onlookers reacted.

I noticed that many persons made statements concerning my performances, as to the conditions of the production of the writing, which were just as emphatic as I made in my own reports about Eglinton, and I also noticed that nearly all these statements were entirely wrong. Even when I sometimes revealed the fact that I was merely a conjurer, the reply which I frequently received was something of this kind: ‘Yes, you may say it is conjuring, but it could not have been done by that means when I did so-and-so’ (describing a supposed test) ‘and yet we got the writing all the same.’” (Davey 1887, p. 408)
To systematically explore such reactions, Davey developed a seance consisting of a fixed sequence of demonstrations. He then conducted a series of seances, each one for a small group of individuals including scholars, spiritualists, skeptics, and others. He tried to carry out each seance exactly the same as the others according to his script. After each seance, he requested the attendees to write out, as fully as they could, exactly what they had experienced. Many of these reports are given in full and form the basis for what can still be considered one of the most exhaustive analyses of the fallacies of eye-witness testimony ever undertaken (Davey 1887; Hodgson 1887; Hodgson 1892).

Just about all the distortions of memory and testimony that subsequent psychological research has documented are found in these accounts. Before Davey’s experiments had been done, almost everyone, including skeptics and believers, accepted the testimony of ordinary people as being generally credible. Richard Hodgson, in his article introducing Davey’s report, described the situation in 1887 in this way:

Concerning the physical phenomena of Spiritualism, Mr. A. R. Wallace has said:—“They have all, or nearly all, been before the world for 20 years; the theories and explanations of reviewers and critics do not touch them; they have been tested and examined by sceptics of every grade of incredulity, men in every way qualified to detect imposture or to discover natural causes—trained physicists, medical men, lawyers, and men of business—but in every case the investigators have either been baffled, or become converts.” . . . It has indeed been considered by perhaps the majority of Spiritualists, not only that the recorded testimony to these physical phenomena is enough to establish their genuineness, but that any honest investigator might establish their genuineness to his own satisfaction by personal experience. I agreed in great measure with this opinion when, some ten years ago, I attended my first seance; but hitherto my personal experiences, though not by any means extensive, have been almost precisely of the same nature as Mrs. Sidgwick’s . . . the physical phenomena which I have witnessed were clearly ascertained by my friends and myself to be fraudulent, or they were inconclusive and accompanied by circumstances which strongly suggested trickery. . . .” (Hodgson 1887, p. 381)

Alfred Russel Wallace, whose quotation begins Hodgson’s introduction, was by any standards a smart person and one of the great scientists of all time. In addition to being the co-founder of the theory of evolution by natural selection, Wallace made many outstanding contributions to anthropology and biology in his long career (Kottler 1974; Williams-Ellis 1966). Wallace was also a maverick who supported a variety of controversial political, social,
and scientific positions (Kottler 1974; Wallace 1875; Williams-Ellis 1966). He was an ardent foe of vaccination and a strong proponent of phrenology. As a result of his experiences at some seances when he returned to England from his long sojourn in the East Indies, Wallace—to the dismay of his scientific colleagues—became a firm supporter of spiritualism. Indeed, he defended even those mediums who had been caught cheating.

As a naturalist, Wallace trusted not only his own observations of alleged psychic phenomena but also those of witnesses. So when many sitters reported seeing their dead relatives materialize at seances, Wallace accepted their testimonies without question. He reported that he had witnessed a medium materialize a six-foot sunflower during a seance and insisted there was no possibility for trickery (Wallace, 1875, 1898). So it is interesting to see how he responded to the original publication of Davey’s experiments in the *Journal for the Society for Psychical Research*. The thrust of Davey’s report was that a conjuror doing simple tricks could elicit the same testimonials to psychic phenomena that were obtained from seances with allegedly true mediums. At the time that Davey first published his results he did not reveal the secrets of how he had accomplished his seance demonstrations. Davey withheld the explanation of his methods because he intended to continue conducting more experiments. It is in this context that Wallace wrote his letter to the editor of the *Journal for the Society for Psychical Research*:

sir,—In the January number of the *Journal* the death of Mr. S. J. Davey is announced, with a complimentary reference to his “experiments,” recorded in Vol. IV. of the *Proceedings*. I, and many other Spiritualists, thought at the time that to publish those experiments without any elucidation of them other than Mr. Davey’s assertion, that they were all “tricks,” was an unscientific and unfair proceeding, since it accepted as evidence in his case a mere personal statement which it has always refused to consider of the slightest value when made by Spiritualists.

Now, however, that further secrecy is unnecessary, I trust that Mrs. Sidgwick, Mr. Hodgson, and other persons to whom . . . Mr. Davey communicated “the details of his methods,” will give a full account of them, in order that we who believe that there are genuine phenomena of which Mr. Davey purported to give “trick” imitations, may be able to judge how far this claim is supported by the actual facts of the case.

If such experiments as those recorded at Sittings 11 and 12, and at the materialisation seance are clearly and fully explained as mechanical or sleight-of-hand tricks, available under the conditions usually adopted by professed mediums, it will do more to weaken the evidence for Spiritualistic phenomena than anything that has yet been adduced by dis-
believers. As one of the witnesses says: “I believe that a full explanation of his methods would ‘fire a shot heard round the world’ in almost every civilised community where the phenomena of so-called ‘Spiritualism’ are perplexing, and often madden true and good people.” . . . But to have this effect it will not do to explain some of the phenomena by trick, leaving the more mysterious unsolved. They are claimed to be all trick, and unless all can be so explained many of us will be confirmed in our belief that Mr. Davey was really a medium as well as a conjurer, and that in imputing all his performances to “trick” he was deceiving the Society and the public. (Wallace 1891, p. 43)

Hodgson (1892) described in detail the methods used by Davey. In the same article, he responds to Wallace’s letter. Hodgson points out that in the person of Wallace “there is no more illustrious name than his upon the roll of adherents to a belief in Spiritualism; and his reply is substantially a confession that he cannot distinguish between Mr. Davey’s performances and ordinary ‘mediumistic’ phenomena. But strangely enough . . . Mr. Wallace’s conclusions seems to be, not that the analogous phenomena which have been reported about ‘mediums’ were due to trickery, but that Mr. Davey’s performances were ‘mediumistic’! . . . we are asked to prove that Mr. Davey was not a medium!” (pp. 254–255).

Even after Hodgson fully revealed the methods by which Davey was able to successfully simulate spiritualistic phenomena, Wallace never wavered in his staunch defense of mediumistic phenomena. He was indefatigable in rebutting every skeptical argument against the reality of spiritualistic and psychic phenomena. Rereading his many interchanges with skeptics today, I am impressed with his ingenuity and cleverness in finding weaknesses in his opponents’ arguments. He always found ways to rationalize exposures, confessions, and other actions of alleged psychics and mediums that were embarrassing even to other believers.

We can find reasons for his adherence to otherwise discredited beliefs in the chapters of this book. It is easy to cite personality factors, his prior history with unfair attacks on novel claims, his long isolation from Victorian society, his lack of formal education, and so on. Even using the principle of charity, however, I find it difficult to excuse his support of discredited mediums and his insistence that Davey, despite his claims to the contrary, was really a medium. Even many of Wallace’s fellow spiritualists and believers in the paranormal often felt that Wallace was wrong in his support of even the most disreputable medium.

So, can we say that Wallace was a smart person who acted stupidly in this domain? Do we have here an example of expertise that is highly domain-
dependent? In the domain of biology and finding and identifying new plants and animals, Wallace had acquired the appropriate tacit knowledge and wisdom. In the domain of psychical research, however, he was certainly foolish in Sternberg’s sense and perhaps stupid in the everyday sense.

One new issue that arises, especially with Wallace, is the possibility that smart people can be stupid just because they are smart. I conjecture that if Wallace had been somewhat less intelligent and ingenious, he might not have been able to deflect the otherwise strong arguments and evidence against his strong beliefs in spiritualism and phrenology. His intelligence enabled him to devise clever ways to disarm and deflect any attacks on his cherished beliefs.

Arthur Conan Doyle and the Fairies

Arthur Conan Doyle was the creator of Sherlock Holmes, arguably the most famous fictional detective of all time. Holmes was the master of careful observation and logical deduction. On the few occasions when he encountered something allegedly paranormal, he managed to debunk it and provide a perfectly mundane explanation. His creator, while sharing many of Holmes’s qualities, also differed in important ways (Stashower 1999). Doyle spent almost all the last part of his life promoting the cause of spiritualism and related psychical matters. His two-volume History of Spiritualism (1975) competes with Wallace’s writings for the reputation of being the most supportive treatises of every spiritualistic claim. Like Wallace, Doyle defended the reality of even those mediums who had been caught in blatant trickery. And, like Wallace, Doyle used his intelligence and cleverness to dismiss all counterarguments.

As is well known, Doyle did not like his fictional detective (Stashower 1999). He felt that the popularity of Sherlock Holmes was interfering with his desire to be known as a serious author of historical fiction. Twice, Doyle actually tried to get rid of Holmes by having him killed in the stories. The public outcry was so great, however, that each time Doyle was forced to resurrect his protagonist. Some commentators believe that in attempting to kill Holmes, Doyle was actually trying to suppress that part of his personality that was skeptical and that stood in the way of his fully believing in psychic and other unlikely phenomena.

Perhaps Doyle’s most striking departure from rationality was his support for the reality of fairies. His book The Coming of the Fairies (1972) tells the story of two teenage girls who were able to obtain photographic images of fairies while alone in the woods. Doyle includes reproductions of these photos and, in good Sherlock Holmes style, argues for the reality of these fairies.

In another example of perhaps being too “smart” for one’s own good,
Doyle wrote a fascinating chapter, in his book *The Edge of the Unknown*, “The Riddle of Houdini” (1970), soon after Houdini died in 1928. In this chapter, Doyle tries to come to grips with what he considered to be both the virtues and vices of this famous magician and spiritualist debunker. In what appears to be the type of argument his famous detective might make, Doyle, step by step, describes Houdini’s famous escapes as well as his unrelenting attacks on mediums. From Doyle’s viewpoint, Houdini unfairly included genuine mediums along with fake mediums in his attacks. Gradually, and with Holmesian thoroughness, Doyle attempts to show that Houdini had powers that went beyond those of conjuring—that Houdini was in fact a true psychic medium who could accomplish his famous escapes by dematerializing and rematerializing himself. Why, if Houdini possessed such psychic powers, did he devote so much of his life to denying the existence of such powers? The ingenuity of Doyle (Holmes) comes to the rescue. As Doyle develops his case, it appears that Houdini did not want people to know that true psychic powers exist and that he, Houdini, possessed them. If people realized that Houdini was a psychic, they would not give him credit for being a clever conjurer. According to Doyle, Houdini’s vanity was such that he wanted to receive credit for being a clever magician. So he denied paranormal powers in both himself and others. Thus Doyle was able to use his smartness to outsmart himself—that is, to maintain his cherished beliefs in spiritualism and fairies.

Conclusions

The question of why smart people can be (or seem to be) so stupid raises a multitude of issues. The chapters in this book are a good start toward bringing up many of these facets. But stupidity is a complex, ambiguous, and vague notion. It is also emotionally charged and socially sensitive. As my additional examples show—and these represent only a minute fraction of the possibilities—as we widen our sample of exemplars, more and more new issues crop up. Despite the fact that this book is only a first attempt to take a serious look at stupidity, and that the contributors differ among themselves on some of the issues, I have a sense that at least some partial consensus and some themes can be found among the chapters, either explicitly or implicitly. I list some of these themes here.

1. *Stupidity contains both cognitive and moral implications.* Recall Köhler’s description of how he responds to watching a chimpanzee make a bad or
stupid error. He admits feeling frustrated and angry. Similarly, Dweck and other contributors to this book seem to be implying that stupid behavior is somehow morally wrong because the actor is failing to use her existing abilities to full advantage. The failure or departure for optimal behavior is inexcusable given the knowledge and cognitive capacities of the actor.

2. Justifiable mistakes and blunders should not be labeled “stupid.” At least some of the authors explicitly or implicitly subscribe to a principle of charity that requires us to withhold attributing stupidity to maladaptive acts for which we can find plausible justification. Moldoveanu and Langer, for example, take the strong position that if we can imagine an alternative construction of the situation for which the given behavior would be normatively correct, then we should consider that behavior rational or reasonable even if that behavior violates the normative standards for the way the observer represents the situation. I suggest that this stance is overly strong for at least two reasons. The first is that our ability to imagine a possible scenario in which the actor’s behavior is rational does not guarantee that the actor, in fact, was acting according to the alternative representation. Second, even if we can generate multiple representations for a given problem, it does not mean that all representations are equally reasonable. Intelligence and rationality might include the ability to generate the representation that the problem poser has in mind.

3. Many acts of stupidity, or seeming stupidity, result from mindlessness. While this seems trivially obvious, we have to be careful about how we explicate this principle. As Perkins and others have noted, because of the limitations of controlled processing, we cannot be mindful of all our actions. Indeed, the overwhelming activity of the brain and cognitive processing occurs outside of conscious control. Some aspects of wisdom, as Sternberg envisions it, and expertise are prototypically automatic, unconscious and “mindless.” To preserve our limited mindful processing capacity for important matters, we have no choice but to automate as many mundane processes as possible.

One could argue that it would be stupid to try to be mindful about every situation that we confront. Intelligence and/or wisdom might consist in knowing what to be mindful about and when to delegate processing to mindlessness. Perkins makes the interesting suggestion that it might be possible to develop mindless procedures that actually prevent the sort of folly he discusses.

4. Many acts of apparent stupidity result from limited or inadequate information and...
resources. The authors who explicitly make this point do not necessarily deny that stupidity can stem from inadequate information and resources. They find such causes uninteresting. However, it would be within the spirit of least some of the contributions to deny the label of “stupidity” to such acts. After all, this can be seen as a justifiable or excusable reason for behaving in a maladaptive way.

Again, we have to be cautious in mindlessly accepting this principle. When Franz Joseph Gall created what later became phrenology, he validated his hypotheses about what function goes with which bump on the skull by observing people under a wide range of settings (Gall 1835). For example, when he thought that the size of a certain place on the skull indicated acquisitiveness, he then looked for people with large bumps in that area and tried to see if they were acquisitive. He also looked for people who had small bumps to see if they were lacking in acquisitiveness. So far as I can tell, Gall kept no written tallies of the results. He relied on his memory to decide whether the correlation between bumps and function existed. When Gall did his research, there was no correlation coefficient, the constructs and procedures for evaluating reliability and validity had not yet been developed, the notion of random and representative sampling as opposed to biased sampling was not available, the need for double-blind procedures was unknown, and the many biases of observation, memory, and testimony had not yet been discovered by psychologists. Gall was badly mistaken in his findings of correlations between function and bumps, but we would not call him stupid because the information and methodologies he needed were simply not available to him.

Many otherwise smart people today find correlations between what alleged psychics say and the events in their lives. They believe these correlations are real despite the fact that the best psychological research consistently finds no validity to what the alleged psychics say. Most of these people also lack the required information to know how their perceived correlations are illusory. It is not so easy to justify their mistakes in this area as it is to justify, for example, Gall’s mistakes. Many people today might falsely believe psychics because they lack the necessary information—but such information is available and, at least in some cases, we might argue that they should know about it.

5. Dumb people cannot do stupid things. None of the authors explicitly state such a principle. I find it implicit in many of their discussions. For example, according to Stanovich, stupid or irrational behavior occurs when an individual violates normative principles in spite of the fact
that she has adequate cognitive capacities for successfully coping with the problem. The irrationality here stems from thinking dispositions and coping styles of the kind discussed by Austin and Deary. Although this is probably inconsistent with folk usage, the implication is that a person who performs a maladaptive act because she has inadequate cognitive capacities is not stupid so long as she is doing the best she can with what she has.

6. Smart people can be stupid just because they are smart. I have used the examples of Alfred Russel Wallace and Arthur Conan Doyle to make this point.

Obviously, there is much more to be said about smartness, wisdom, stupidity, and foolishness. This collection of chapters is a welcome start.

REFERENCES

—. (1891). Correspondence: Mr. S. J. Davey’s experiments. *Journal of the Society for Psychical Research, 5*, 43.

