header
Home
Current Research Projects
Conservation Genetics
Evolutionary Genetics of Vector and Parasite Populations
Invasion Biology
Development of Molecular Markers for Novel Organisms
Past Research Projects
Publications
By Subject
Before 2001
After 2001
Lab Members
Dr. Adalgisa Caccone
Current Lab Members
Past Lab Members
 
YIBS-Molecular Systemtics Conservation Genetics Laboratory
Course Offerings
DNA Analysis Facility on Science Hill
Galapagos Conservancy
Jeffrey Powell web site
Job Opportunities
Research Opportunities
Other Links
Yale Department of EEB
Current Projects in
Evolutionary Genetics of Vector and Parasite Populations

malaria
Malaria and Anopheles gambiae


We continue our work on understanding patterns of genetic and ecological diversification between and within populations of the main vector of malaria in Africa, the mosquitoes of the Anopheles gambiae complex. The overall aim of the projects are to achieve a better understanding of the population biology of the vector to control the disease it transmits. Work in this area includes 1) understanding patterns and process of spatial genetic differentiation between island and continental populations, 2) identifying genes controlling the innate immune response in mosquitoes that are infected with the malaria parasite, Plasmodium falciparum, 3) using museum samples to detect the geographic origin of an accidental introduction of An. gambiae in Brazil in the last century, 4) using DNA markers to detect the gut content of Anopheles larvae, to understand the process and patterns of spread of genes involved in insecticides resistance. These projects are in collaboration with Jeffrey Powell, Michael Reddy (Graduate Student, EPH), Erika Schielke (Graduate Student, EEB), and past post-docs Michel Slotman, Nikos Poulakakis, Jonathan Marshall (Southern Utah University), Aris Parmakelis (Un. of Athens), Michael Russello, many other US and international scientists, and several Yale Undergarduates.

Publications

helix

dengue
Yellow fever, Dengue fever and Aedes aegypti


The focus of this project is the so-called yellow fever mosquito, Aedes aegypti. Presently, on a global scale, it is a major health concern as the most important vector of dengue fever viruses. Two billion people worldwide are at risk for dengue disease, some forms of which are fatal. We started to gather preliminary data for a project intended to understand the worldwide genetic structure of this important vector. This genetic variation will be related to variation in the species’ ability to transmit flaviviruses. This project is in collaboration with Jeffrey Powell and many other US and international scientists.

Publications

helix

tsetse
Evolutionary genetics of tsetse flies, its parasites and symbionts


Human African trypanosomiasis (HAT) (a.k.a. African sleeping sickness) kills thousands of people each year in sub-Saharan Africa. The disease is caused by African trypanosomes transmitted by the tsetse fly. HAT transmission is complex; it requires mammalian and invertebrate hosts and involves domestic and wild reservoirs. A paratransgenic strategy has been developed which exploits the unique biology of tsetse and its maternally inherited bacterial symbionts. In this strategy, tsetse’s symbiont Sodalis is harnessed to express trypanocidal molecules in tsetse’s midgut to impair trypanosome transmission. Our focus is on the understanding of the patterns of genetic differentiation of the three players in the paratransgenic approach: the tsetse vector, Glossina fuscipes, the Trypanosoma parasite, and the maternally inherited symbionts, Wolbachia, Sodalis, and Wigglesworthia.

Current members of the lab working on this project: Jon Beadell (postdoc EEB) and Chaz Hyseni (Research Assistant, EEB). Past members of the lab involved in the project: Michel Slotman, Oliver Balmer, and Kirtin Dion (EEB). This project is in collaboration with Yale EPH professors Serap Aksoy and Alison Galvani, and Loyce Okedi and Patrick Abila from the Livestock Health Research Institute LIRI, Uganda.

Publications

helix

ticks

Blood meal analysis of ticks carrying Lyme Disease in the Eastern United States

Determination of critical components of pathogen transmission is essential in the development of effective interventions against important tick-borne infectious disease threats such as Lyme disease. Accordingly, we seek to identify the larval host of the tick Ixodes scapularis, the principal vector of Borrelia burgdorferi, the causative agent of Lyme's Disease in the northeastern United States. To achieve this goal, we are currently developing PCR-based techniques for the identification of the reservoir host blood-meal in Ix. scapularis nymphal ticks based on amplification of small species-specific fragments of the ctyb mtDNA gene. This project is in collaboration with Deborah Lanterbecq, Michael Reddy (Graduate Student, EPH), Nicole Ayache (Undergraduate student), and Durland Fish (EPH Vector Epidemiology Laboratory).

Publications